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In order to estimate accurately the values of the elastic constants of a solid at high pressure and at an
arbitrary temperature 7" from the ultrasonic measurements of the velocities of elastic waves propagated in
solids as a function of pressurc at the temperature 7', it is necessary to know a priori the compressibility of the
solid as a function of pressure at the temperature 7. However, this latter information is not always available.
Hence, one has to make some kind of approximation to estimate the values of the elastic constants of solids
at high pressure. The procedure developed here is more consistent than previous procedures. It requires
a priori knowledge of the following values: the thermal expansion coeflicient, its temperature derivative, the
specific heat at constant pressure of a solid at one atmosphere, and the travel-time measurements of the
elastic waves propagated through the solid as a function of pressure at a temperature 7" or at more than one

temperature.

INTRODUCTION

Aninvestigator attempting to determine the variation
of elastic constants of solids with pressure by ultrasonic
measurements on new (or even well known) materials
may find that the needed compressibility measurements
are either unavailable or if available are unreliable.
Cook’s method enables one to obtain an estimate of the
values of the elastic constants of a solid at high pressure
without a priori knowledge of the compressibility of the
substance.! In developing the estimating procedure
Cook assumed that the parameter A(LP) [c.f. General
Notation and Analysis Section, Eq. (3)], remained
constant with pressure. The value of A(F) at any
pressure P is given by its magnitude at one atmosphere.
Ruoff* extended the results of Cook in the case of cubic
solids by presenting an estimating procedure which
permitted the parameter A(P) to vary with pressure.
This was done by expressing A(F) in a power series
expansion given by (1):

A(P)=A(P=1)+P[0A(P)/dP]pn
HPLEA(P) /0P Tt o, (1)

where the quantities on the right-hand side of (1) are
cvaluated at 1 atm.

higher pressures provided the ultrasonic measurements
are made as a function of pressure at more than one
temperaturc. This enables one to compute a more
realistic estimate of elastic constants of cubic solids as a
function of pressure.

The size, density, and elastic constants of a material
specimen change with the application of pressure. The
concomitant changes are observed in the value of the
resonant or null frequencies of a standing wave and also
in the measurement of travel-time for a pulse between
flat parallel faces of the specimen. The analysis presented
in this paper refers to frequency measurements but is
equally valid for the travel-time measurements of an
elastic wave propagated in a medium.

GENERAL NOTATION AND ANALYSIS

By a solid we always refer to a cubic solid. Even
though the quantities dealt with here refer to a pressure
P and a temperature 7', for simplicity the relevant
suffix for the temperature is dropped from the general
notation.

p(P) the density of the material at pressure
P
B(P) volume-expansion coefficient of the

material at pressure P

Even so the lack of relevant data in the case of most  Cp(P) specific heat at constant-pressure of the
materials limits one to the first derivative of A( P). This material at pressure P
is easily seen by differentiating A(P) with respect to  BS3(P) adiabatic bulk modulus of the material
pressure P. The present work develops an iterative at pressure
procedure to estimate the values of the elastic constants BT (P) isothermal bulk modulus of the ma-
of cubic solids at high pressure which differs from the one terial at pressure P
developed by Ruoff with respect to the assumptions x7(P) isothermal compressibility of the ma-
regarding (1) the pressure derivative of the thermal terial at pressure P
volume expansion coefficient at a temperature 7', (ii) L(J, P) the thickness of the specimen used in
the temperature derivative of the volume thermal the measurement of the Jth velocity
expansion coefficient at a pressure £, and (iii) the mode at pressure P
estimation procedure for A(2). It is shown here that no N (P) =L({JI, P)/L{J, P); PP, P=1=
assumptions regarding (i) and (ii) are necessary in 1 atm or 1 bar, only in the case of cubic
order to estimate the elastic constants of cubic solids at material
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ViCT;:P) the Jth velocity mode in the material
at pressure /I’

7(Js P) the travel-time for the Jth velocity

mode at pressure P

the Ith null frequency observed for the
Jth velocity mode in the material at
pressure P

F(I, 7, P)

N(T; J, P) the number of } wavelengths in the
specimen corresponding to I'(1, J, P)
(I, I, P) the travel time in the specimen cor-

responding to F (7, J, P)

mechanical impedance of quartz trans-
ducer for Jth velocity mode at
pressure P

IMP(J, P)

K(TL-J; P) IM P(J, P)/(mechanical impedance of
the material corresponding to(Z, J, P)

V1, P) longitudinal velocity in the (100)
direction at pressure P

V(2,P) shear velocity in the (100) directtion a
pressure I’

V(3, P) longitudinal velocity in the (110)

direction at pressure I

We need only know any three independent velocity
modes in order to obtain the three elastic constants of a
solid. In this paper the resonant frequencies measured
as a function of pressure for the longitudinal modes of
propagation in the (100) and (110) directions and the
shear mode of propagation in the (100) direction have
been used.?

We also assume the following:

(i) The temperature dependence of the volume, or
the linear expansion coeflicient at a temperature 7" and
one atmosphere is known;

(ii) the specific heat at temperature 7' and one

atmosphere is known; and
(iii) [0B(P)/0T1p[0B(P1)/0T Jp1, where P> Py,
holds.* :

Then the procedure outlined below can be used to
estimate the eclastic constants of solids at higher
pressures, without reference to a priori knowledge of the
compressibility of the substance.

The relation between the adiabatic bulk modulus and
Vi(J, P), (J=1,3), in a cubic solid may be written as
BS(P)=3a(P)[4V?@3, P)—4V*(2, P)—V*(1, P)]. (2)
Relation (1), expressed in terms of L(J, P), 7(J, P),
N(P), and p( 1), is given as relation (3):
BS(P)=3p(PON(P)[4L2(3, P1)/7*(3, P)

—412(2, P1)/7(2, P)=L*(1, P0)/7(1, P)], (3)
where p(P)=N(P)p(P1). By the definition of iso-
thermal bulk modulus we obtain
BT(P)=— Vol.(P)[aP/d Vol.(P) ]r

=p(P)[0L/dp(P)Jr=S\(P)[OP/IN(P)]r. (4)

P. DANDEKAR

And if
A(P)=pX(P)B5(P) T/p(P)Cr(P) (5)
where temperature 7" is in Kelvin, then
BT(P)=B5(P)/[1+A(P) ]. (6)

Using Williams and Lamb’s’ method of ultrasonic wave
velocity measurements as modified by Colvin,® transit
time for the various wave propagations is obtained from
the following relations:

N(1,J, P)=Integer([F(I, J, P)/AF(I, J, P)]]
—0.5—K(1, J, P)},

(I, J, P)=[N(, J, P)+0.5]/2F (I, J, P)
—[K(1, J, P)/2){[V/F (R, J, P)I~[1/F(, J, P)]}.
(8)
-In the above expressions K (Z, J, P) may be written as

K, J, P)=IMP(J, P)/p(P)V(J], P)

=IMP(J, P)r(J, P)/o(P)N(P)L(J, P1)
9

where /M P(J, P) is the mechanical impedance of the
transducer for the Jth velocity mode at pressure P.

It is evident from relation (8) that if the measure-
ments are made near F(R, J, P) any error in the
estimation of 7(7, J, P) due to inaccurate knowledge of
K(I, J, P) becomes negligible.

By integrating relation (4) we obtain

)\(P) =)\(P1) exp[(P—Pl)/ISBT(P)].

(7)

(10)

Two things should be noted regarding the derivation of
(10) from (4): (i) In the definition of isothermal bulk
modulus at a pressure P, one could obtain its value by
either decreasing or increasing the pressure slightly:
and (ii) when integrating (4) it must be remembered
that it is implied in the definition of B7(P) that it
remains constant over the range of integration 7; to P.
In expression (10) it is implied that the isothermal
bulk modulus of a substance at pressure » has been ob-
tained by decreasing the pressure from P to P;. The
expression for A\(2) as derived above differs from that
obtained by following either Cook’s or Ruoff’s pro-
cedures. The expression for N( 2) that will be obtained
by following Cook’s or Ruoff’s procedure may be given
by ; '

AP) =1+ (1) () T f1P£1+A(P)J

X{[4/7@3, P)1=[4/7(2, P)]-[1/7(1, P)]}7'dP,
(11)
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ITERATIVE PROCEDURE TO ESTIMATE ELASTIC CONSTANT VALUES

where L(J,1)=L(1), and [14+A(P) ] is a constant in
Cook’s method and equals [14+A(1)] but is a variable
in Ruoff’s method.

This expression (11) for A(P) is arrived at by
expressing BT (P) in terms of p(1), L(1), 7(J, P), and
A( P) with the help of Egs. (3) and (6), and integrating
(4). Hence, A(P) in (11) can be determined if the
value of A(P) can be estimated. Ruoff* estimates the
values of A(P) from the relation (1) by means of
thermodynamics relations. For example, to evaluate
[0A(P)/9P]r, we would rewrite BS(P) as

BS(P)=p(P)[L*(P)/m(P)]. (12)
Then A(P) in (5) may be written as
A(P)=p(P)TL}P)/[(P)Ce(P)], (13)

and the logarithm derivative of A(P) yields

5’(17) (ggl)f 6(21’) (aﬂa(f))ﬁ L(ZP) (aLa(zf))T

. T(Zp) <ara(;> )>f c,,: 7) (“;’ﬁp )>T- (14)

From thermodynamics, we know that

[08(P)/0PJr=—[0x"(P) /0T ]r (13)
and
ace(P)\ T [(3B(P) | ., }
( aP )f p(P) {( aT )PLB (Flps A

Hence, in the limit as P—1, the expression (14) reduces
to

ol M S e

2 (Or(l’)) r
r(1)\ 8P Jrpsr p(1)Ce(1)

BPY
X [(Tr )M+a (1)] . ()

Thus the magnitude of the first derivative of A(P) in the
limit as P—1 may be determined if the [3x"(P)/d7]p-,
[98(P)/dT Jp=1, B(1), and Cp(1) are known and the
value of A(P) may be approximated at a pressure £ by

A(P)=A)+PLOA(L)/OP Jpr. (18)
Similarly the higher derivatives of A(P) may be
evaluated if the relevant thermodynamic data are
available.
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The expression for N(P) in the new method, ie.,
relation (10) described in this paper, is seen to differ
from the earlicr two works for two reasons. In their
works, (i) A(P) is defined as L(J,1)/L(J, P), and
(ii) A(P) is estimated by a different procedure.

The quantities measured or known are p(1), L(J/, 1),
F(I, J, P) or 7(J, P), P and T. For quartz trans-
ducers, IMP(J, P) and F(R, J, P) can be obtained
safely to 4000 bars and from room temperature to 90°K
from the work of McSkimin and Andreatch.” This in-
formation is not required if the ultrasonic measurements
are of the travel times. 8(P) is usually known only as a
function of temperature at 1 atm. However, the varia-
tion in the elastic constants with temperature at
pressure P provides one with the temperature deriva-
tive of the isothermal compressibility. And from
relation (15) one may obtain 3(/) at temperature T’
if B(P) is known at one atmosphere and temperature 7',
In a normal substance where P <P,

Lox"(P) /0T ]p<[3x(P1)/0T ]r (19)
holds. So, to assume that
—[88(P) /0 PTe[0x" (1) /0T pa  (20)

ensures that the value of A(P) obtained from (3) is
underestimated. If ultrasonic measurements are made
as a function of pressure at more than one temperature,
a better estimate of [dx”(P) /a7 ]p may be obtained by
simply incorporating [dx”(2)/07 Jp as an additional
parameter to be iterated according to the scheme
presented in Fig. 2. Where such information is un-
available (19) or (20) may be used. Similarly the
computation of Cp(P) from relation (16) by assuming

[aﬁ(P)/aTJT'-E[aﬁ(Pl)/aT]PFI (21)

implies that the resulting values of Cp(P) from relation
(16) will also be underestimated. However, the re-
sultant error in the estimated value of A(2) due to the
intrinsic underestimation of 8( ) and Cp(P) is likely
to be small, up to 3-4 kbar for most materials. Thus
everything in expression (5) except BS(P) and p(P)
are either known or may be approximated with reason-
able accuracy.

The iterative procedure described below is that pre-
sented in Fig. 1, because we feel that the understanding
of the procedure given in Fig. 2 will be facilitated by an
understanding of the simpler procedure. Thus the
iterative procedure described assumes that relations
(20) and (21) hold.

At P=1 atm, all the quantities involved are known;
no iteration is required to estimate the required elastic
constants of solids.

At the next higher pressure all the fundamental
quantities in the relations (3), (3), (6), (7), (8), (9),
and (10), except N\(P) and A (I, J, P), are known. The
procedure developed here involves a two stage iteration,
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Increase Pressure (P) <

P. DANDEKAR

SET A (P)=X\ (Preceding Pressure)

SETA(P)= N(P)| p(P)

{ee

Jth velocity mode <&

g

next velocity mode

Ith Resonont Frequency &

SET Kk (I,J,P,)= 1.0

7
SET K= N(I, 4, P)
T (1,4,P)
/ v (1,4,P)
K'(1,4,P)

IF K'$K 1% IF K=k

next I or

Fic. 1. A flow chart of thei fterative
cedure to estimate the var
elastic constant of a cubic solid v

\
When all velocity modes
ore calculated

8% (p)
A(P)
8" (P)
X(P)

IF_ XN (P)# X (Preceding Iteration)

vV
IF X(P)=X(P)

All other

parameters
at pressure P

sure when the elastic wave volocilo:
obtained from the measurcment of
resonant frequencies of a standin
as a function of pressure at a temperatuie.

Y

END

one at the level of pressure and the other on the 7th null
frequency of the Jth mode. We set X\( ) =\ (Preceding
Pressure) and A (7, J. P)=1 and estimate .N(/, J, P)
and7(Z, J, P)and K(I, J, P). 1f the value of K(I, J, P)
thus obtained agrees with the previously assigned
value we compute N (7, J, P) for the (I41)th fre-
quency. If this value of K'(7, J, /) does not agree with
the previously assigned value these values of (7, J, P)
and 7(I, J, P) are corrected by setting K (7, J, P)
equal to the value obtained last, and iterating all over
again. This is repeated till two consecutive estimates of
K(I, J, P) are the same. A similar computation is
performed for all the velocity modes. By interpolation,
from these 7(1, J, P)’s one obtains values correspond-
ing to F(R, J, P), cach of which is called 7(J, P).
These 7(J, P)’s in turn are used to obtain V(J, P)
which together with p(2) vield an estimate of BS(P),
A(P), BT(P), and finally X(P). If the value of X(P)
thus obtained agrees with the previously assigned value,

» thermal bulk moduli of NaCl and KCl as obtained b i

\'%

TaBLeE I. The pressure derivative of the adiabatic and w‘»

and Schuele (B and §), as obtained in the present work | /)
from the data of Bartels and Schuele.

Bulk modulus

Band § D
NaCl
295°K
Adiabatic 5.27 5.33
Isothermal 5.35 5.38
195°K
Adiabatic 5.13 5.18
Isothermal 5.20 5.23
KCI
295°K
Adiabatic 5.34 5.30
Isothermal 5.41 5.4
195°K
Adiabatic 5.34 5.36
Isothermal 5.41 5.43

b~
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Increase Pressure (P)
.

Temperature (T) <
next Temperoture

SET A(P,T)=A (Preceding Pressure, T)
S V2

SET A(R,TI=A(P,T) [ B(RT)

SETA(P,T)=A (Prolodinq Pressure, T)

F16. 2. A flow chart of the iterative pro-
cedure to estimate the variation in the
clastic constants of a cubic solid with
pressure when the travel-time measure- A
ments are made as a function of pres-
sure at more than one temperature,

A(P, T)=[ox(P, ) /0T ] p.

=
SETA(P,TI=X(P, T [ p(PT)

Jth velocity mode at

next velocity mode
Pressure P and Temperoture T

the estimates of BS(P) and BT (P) are correct. If this
value of N(P) does not agree with the previously
assigned value these BS(P) and B7(P) are corrected by
means of setting A(P) equal to the value of \(P)
obtained last and iterating all over again. This is
repeated till two consecutive estimates of N( ) are the
same. Once this is known all other elastic constant
parameters may be obtained. This iterative procedure
is sketched diagramatically in Fig. 1.

Table 1 displays the estimates of the pressure deriva-
tives of the adiabatic and isothermal bulk moduli of
NaCl and KCl at 295° and 195°K obtained from the
above mentioned iterative procedure. The required
travel time data as a function of pressure for this com-
putation were reconstructed from the pressure deriva-
tives of the travel-time for the various clastic wave
velocities given in the paper of Bartels and Schucle.

L,P,T)
viJ,P,T)
- <8
- When all vewocny modes
are calculated ot Pressure P
ond Temperature T
& (p,T)
(ac,, (P,T)) y
P
A(P,T)
8’ (P,T)
A (R,T)
IF X' (P,T)# X (Preceding Meration, T)
IFA' (P, T)=N(P,T)
o
~
T\
When oll B' (P,T) are
cofculated at Pressure P
A'(P,T)
IF A' (P, T)# A(Preceding Iteration, T) \
N
IF A (P,':L)SA(P,T)
All other parometers at
Pressure P and all Temperatures
N
>

All other ancillary data used were also taken from Ref.
8. It may be seen that the estimates of the pressure
derivatives of the bulk moduli of NaCl and KCI as
obtained in the present work for pressures ranging up
to 1.7 kbar differ slightly from those obtained by Bartels
and Schuele. However, such differences may become
significant at higher pressures. It should be noted
further that the iterative procedure outlined in the
present work may be easily applied to determine the
variation in the elastic constants-of an isotropic solid.

Figure 2 is the schematic representation of the
iteration procedure when the travel-time measurements
are made as a function of pressure at more than one
temperature. .

We are in the process of developing a variant of this
iterative procedure designed to estimate the elastic
constants of a noncubic solid as a function of pressure.
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Small-scale indentation experiments performed on nonmetallic specimens are reported. These experiments
are very similar to others performed by one of us (N.G.) on metal specimens and reported in a previous issue
of this journal. Again, it is believed that the theoretical strength of the perfect lattice is being observed.

In a previous paper! Gane and Bowden have reported
the results of very small-scale indentation tests per-
formed on electropolished single-crystal specimens of
several fcc metals. These experiments were performed
inside a scanning electron microscope, and used fine
single-crystal titanium carbide tips, similar to field-ion
microscope tips, as indenters. These tips were prepared
by a two-layer ac electropolishing technique, developed
originally by Ralph.? The results of these experiments
were notable because (a) no deformation occurred
until a critical load on the indenter was reached, and
(b) this critical load was often very high, so that the
shear stress corresponding to the onset of deformation
approached the estimated theoretical shear strength.?

The purpose of the present communication is to
report that similar results have been obtained from an
analogous series of experiments performed on single
crystals of two nonmetallic materials, germanium and
magnesium oxide. {100} surfaces of magnesium oxide
crystals and {111} surfaces of germanium crystals were
prepared by chemical polishing and ¢tching,* and the
former were coated with a thin (~300 ) layer of gold
by vapor deposition, in order to prevent their being
charged up by the incident electron beam when imaged
in the scanning electron microscope. Germanium had
sufticient conductivity that no such conducting layer

was necessary. Figure 1 shows an indenter resting at
zero load on a typical germanium specimen.

The principal experimental difference between the
present work and that of Gane and Bowden! was that
the tips used as indenters in the current experiments
were those having the most nearly spherical ends. Tip
radii were typically 2000-3000 &, and were measured

sl akadtsli
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Fic. 1. A titanium carbide tip resting at zero load on a
{111} germanium surface. Note the dislocation etch pit.
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