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Iterative Procedure to Estimate the Values of Elastic Constants of a Cubic Solid at High 
Pressures from the Sound Wave Velocity Measurements 
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(Received 19 :\fay 1969; in fina l form 19 August 1969) 

In order to estimate accurately the values of the clastic constants of a solid at high pressure and at an 
arhitrary temperature T from t he ultrasonic nH'asuremen ts of the velocities of elastic wa vcs propagated in 
solids as a function of pressurc attbe temperature T, it is necessa ry to know II priori the compressibility of the 
solid as a function uf pressure at the tcmperature T. However, this laller information is not always available. 
Hence, one has to make some kind uf appruximatiun to es timate the \·:t!ues of the elas tic constants of solids 
at high pressure. The proced ure develuped h{'rc is more consistent than previous pruced ures. It requircs 
a priori knowledge of the following values: the thermal expansion coenicicnt, its temperature de riva tive, the 
specific heat at constant pressure of a solid at one atmosphere, and the travel-time measuremcnts of the 
elastic w,I\'es propagated through the solid as a function of pressure at a temperature T or at more than one 
temperature. 

INTRODUCTION 

An investigator attempting to determine the variation 
of clastic constants of solids with pressure by ultrasonic 
measurements on new (or even well known) materials 
may find that the needed compressibility measurements 
are either un available or jf available are unreliable. 
Cook's method enables one to obtain an est imate of the 
\';dues of the elastic constants of a solid at high pressure 
without a priori knowledge of the compressibility of the 
substance. l In developing the estimating procedure 
Cook assumed that the parameter D. (P ) [ c.f. General 
:\ otation and Analysis Section, Eq. (5) ], remained 
constant with pressure. The value of 6 (P ) at any 
pressure P is given by its magnitude at one atmosphere. 
RuolP extended the resul ts of Cook in the case of cubic 
solids by presenting an estimating procedure which 
permitted the parameter 6 (P) to vary with pressure. 
This was done by expressing 6 (P) in a power sen es 
expansion given by (1): 

.l(P) = 6(P= 1) + p[a6 ( p ) / ap]r_l 

higher pressures provided th e ul t rasonic measurements 
are made as a function of pressure at more than one 
temperature. This enables one to compute It more 
realistic es timate of elastic constan ts of cubic solids as a 
f unct.ion of pressure. 

The size, density, and elastic constants of a material 
specimen change with the appl ication of pressure. The 
concomitant changes are observed in the value of the 
resonant or null fre4uencies of a standing waye and also 
in the measurement of travel-time for a pulse between 
flat parallel faces of the specimen. The analysis presented 
in this paper refers to frequency measurements but is 
equally valid for the travel-time measurements of an 
elastic wave propagated in a medium. 

GENERAL NOTATION AND ANALYSIS 

By a solid we always refer to a cubic solid. Even 
though the quantities dealt wi th here refer to a pressure 
P and a temperature T, for simplicity the relevant 
suffix for the temperature is dropped from the general 
notation . 

the density of the ma terial at pressure 
p 

where the quantities on the right-hand side of (1) are (3(P) 
evaluated at 1 atm. 

volume-expansion coefllc ien t of the 
material at pressure P . 

Even so the lack of relevant da ta in the case of most Cp ( P) 
materials limits one to the first derivative of 6 (P) . This 
is easily seen by dilTerentiating 6(P) with respect to BS(P) 
pressure P. The present work develops an iterative 
proceclure to estimate the values of the elastic constants BT (P) 
of cubic sol ids at high pressure which di ffers frolll the one 
d\:vcJoped by RuotT with respect to the [lssumptions xT ( P) 
regarding (i) the pressure derivative of the thermal 
volullle expansion coetflc ien t at a temperature T, ( ii ) L (J, P ) 
the temperature derivative of the volume thermal 
t'\pansion coefficient at a pressure P, a nd (iii) the 
t:st imation procedure for 6 (P). It is shown here that no f.. ( P ) 
assumptions regarding (i) and ( ii ) are necessary in 
order to estimate the elastic constants' of cubic solids at 
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specific hea t at constant-pressure of the 
material at pressure P 
adiabatic bulk modulus of the mate ri al 
at pressure P 
isothermal bulk modulus of the ma­
.terial a t pressure P 
isothermal compressibility of the ma­
terial at pressure P 
the thickn ess of the specimen used in 
the measurement of the Jth velocity 
mode at pr'essure P 
= L(J, 1\)/ L(J, P); PI < P ; P= 1 = 
1 atm or 1 bar, only in the case of cubic 
material 
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1I(J, P) the fth vciocity mode in the materinl And if 
at pressure l' I1(P) =(:P(P)BS(P) T / pep) CI'(P) (5) 

T(J, P) 

1'(1, f, P) 

N(l, f, P) 

T(1, f, P) 

IMJ'(1, P) 

K(I, f, P) 

V(l, P) 

V(2, P) 

11(3, P) 

the travel-time for the Jth velocity 
mode at pressure P 
the llh null frequency observed for the 
fth velocity mode in the material at 
pressure P 
the number of 1 wavelengths in the 
specimen corresponding to F(l, f, P) 
the travel time in the specimen cor­
responding to F(T, f, P) 
mechanical impedance of quartz trans­
ducer for Jth velocity mode at 
pressure P 
1 M P(J, P)/ (mechanical impedance of 
the material corresponding to r(f, f, P) 
longitudinal velocity in the (100) 
direction at pressure P 
shear velocity in the (100) directtion a 
pressure P 
longitudinal velocity in the (110) 
direction at pressure P 

\Ve need only know any three independent velocity 
modes in order to obtain the three elastic cons tan ts of a 
solid. In this paper the resonant frequencies measured 
as a function of pressure for the longitudinal modes of 
propagation in the (100) and (110) directions and the 
shear mode of propagation in the (100) direction have 
been used.3 

We also ,lssume the following: 

(i) The tempeTature dependence of the volume, or 
the linear expansion coefficient at a temperature T and 
one atmosphere is known; 

(ii) the specific heat at temperature T and one 
atmosphere is known; and 

(iii) [a.B (p)/a T]p~[a!3(Pl) /aT]pl, where P2.P1, 

holds.4 

Then the procedure oullined below can be used to 
estimate the clastic constants of solids at higher 
pressures, ,,,ithout reference to a priori knowledge of the 
compressibility of the substance. 

The relation between the adiabatic bulk modulus and 
V2(1, P), (f = 1, 3), in a cubic solid may be written as 

BS(P)=tp(1')[-lV2(3, P)-.1V~(2, P)-V2(l, P)]. (2) 

Relation (1), expressed in terms of L(.1, PI), r ( J, P), 
X(P), and p(Pl ), is given as rciation (3) : 

BS(P)=tp(P1)X(P)[4D(3, P1)/ r2(3, P) 

-4D(2, PI) / r2(2, P)-D(1, Pl)/r2(1, P)J, (3) 

where p(P)=X3(1' )p(Pl). By the definition of ISO­

thermal bulk modulus we obtain 

BT (P) = - Vol. (1') [uP / u Vol. (I') JT 
= p(P)[u1'/iJp(p)Jl'= !X(p)[ap/aX(p)JT. (4) 

where temperature T is in Kelvin, then 

(6) 

Using Williams and Lamb's·; method of ultrasonic wave 
velocity measurements as modiJied by Colvin,S transil 
time for the various wave propagations is obtained from 
the following relat ions: 

.V(I, J, P)=Integer/[F(I, J, 1') / I1F(I, f, P)J 

-O.S-K(I, f, 1'»), (7) 

T(I, f, P) = [N(I, f, 1') +0.5J/ 2F(I, f, P) 

-[K(I, f, P) / 2J{[1 / F(R, f, P)J-[l / F(I, f, p)JJ 

(8) 

-In the above expressions K(I, f, P) may ue written as 

K(f, f, P) =IMP(J, P) / p(P) V(J, P) 

=IM1'(J, P)r(J, P) / p(1'1)X2(p) L(J, PI) 

(9) 

where IMP(f, 1') is the mechanical impedance of the 
transducer for the fth velocity mode at pressure P. 

It is evident from relation (8) that if the measure­
ments are made near F(R, f, P) any error in the 
estimation of r(l, J, P) due to inaccurate knowledge of 
K(I, f, P) becomes negligible. 

By integrating relation (4) we obtain 

Two things should be noted regarding the derivation of 
(10) fr0111 (4): (i) In the definition of isothermal bulk 
modulus at a pressure 1', one could obtain its value by 
ei ther decreasing or increasing the pressure sligh tly: 
and (ii) when integrating (.1) it must be remembered 
that it is implied in the definition of Bl'(P) that it 
remains constant over the range of integralion P l to P. 
In expression (10) it is implied that the isotherinal 
bulk modulus of a substance at pressure P has been ob­
tained by decreasing the pressure fr0111 P to PI. The 
expression for>.. (P) as derived above di LIers from that 
obtained by following either Cook's or Ruoff's pro­
cedures. The expression for >" (1') that will be obtained 
by following Cook's or Ruoff's procedure may be given 
by 

X(P) = 1+[p(1)D(1)jl IP 

[l+il(P)J 

X {[4/r2(3, P)J-[4/ r 2(2 , 1')J-[1/r2 (1, P)JJ-1dP, 

(11) 
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where L(I, 1) = 1.(1), and [1+~(J')J is a constant in 
Cook's method and eq\lals [l+.6. ( I ) J b\lt is ,t variable 
ill R\lofi's method , 

This expression (11) for A(P) is arrived at by 
",pressing /37'(1') in terms of p(l), 1.(1), T(I, P), and 
j ( I') with the help of Eqs. (3) and (6), and integrating 
(4) , H ellce, A (P) in (11) can be determined if the 
\',due of .6.(1') can be estimated, H,\lotP es timates the 
\';dues of .6.(P) from the relation (1 ) by mealls of 
thermodynamics relations, for example, to evaluate 
[a£l(p) / arJT, we would rewrite )).5 (P) as 

Then £l(P) in (5) may be written as 

and the logarithm derivative of I:1(P) yields 

1 (fJA(P» ) 2 (a{3(p» ) 2 (aL(P» ) 
0.(P) ~ 7'= (3(J» iiP T+ L(P) ap T 

From thermodynamics, we know that 

and 

(ac1'(p» ) = _ ~ {(d(3(P» ) +132(P)}. (16) 
ap l' pep) aT l' 

Hence, in the limi l as 1'-'> 1, the expression (1'*) reduces 
to 

_ 1_ (d£l(P» ) ___ 2_ (axT(p» ) -lxl'(l) 
..l( I ) ap 1' ,1'-1- (3( 1) aT 1'-1 3 

x [(d13(,l:» ) +(32(1) J. (17) 
a1 p-. ) 

Thus the magnitude of the first derivative of £l(P) in the 
limit as P--;.l may be determined if the [axT(p)/ uT]" _l, 
[u!3(p) / aTJ/'=l, 13(1), and Cp (l) a re known and the 
value of £l(P) may be approximated at a pressure l' uy 

1:1 (P) = 1:1 (1) + p[a£l (P) / a PJ/'-l.7" (18) 

Similarly the highcr Jerivatives of 1:1(1') may be 
c\'a luated if the relevant thermodYlJamic data arc 
;].\'ailaule. 

The expression for A (P) in the new method , i.e., 
relation (10 ) described in this paper, is seen Lo di ITer 
from the earlier two works for t\\'o reasons, In their 
works, (i ) A(P ) is defmed as 1-(1, 1) / L(1, P ) , and 
(ii ) ~(P) is estimated by a dilTerenL procedure. 

The quantities measured or known are p( l), L(I, 1) , 
F(J, l, 1') or r(l, P), P and T. for q\lartz trans­
ducers, 1M p el, P) and F(R, J, P) call be obtained 
safely to -WOO bars and frolll room temperature to 90°]( 
from the work of :;\[CSkimin and Andreatch,i This in­
formation is not reC[uired if the ultrasonic measurement.s 
are of the travel t.imes. (3(P) is usualh- known on I\' as a 
function of temperature at 1 atm , H~wever, the ~aria­
tion in the clastic constants with temperature at 
pressure P provides one with the temperature deri\'a­
tive of the isothermal compressibility. And from 
relation (15) one lllay obtain (3(P) at temperature T 
if (3(P) is known at one atmosphere and temperature T, 
In a normal substance where p)~p, 

holds. So, to assume that 

ensures that the value of I:1(P) obtained from (5) is 
underestimated. If ultrasonic measurements are m,lde 
as a function of pressure at more than one temperature 

, ' 
a better estimate of [axT(p) / aTJ" may be obtained bv 
simply incorporating [axT(p) / aT]p as an addilion~l 
parameter to be iterated according to the scheme 
presented in Fig, 2, Where such information is un­
available (19) or (20) may be used. Similarly the 
computation of Cp(P) from relation (16) by assuming 

[a{3 (P) / a TJT~[d{3 (PI) / a T]Pl=l (21) 

implies lhat the resulting' values of Cp(P) from relation 
(16) will also be underestimated, However, the re­
sul tant error in the estimated value of £l(P) due to the 
intrinsic underest imation of (3 ( P) and Cp ( P) is likely 
to be small, up to 3- ,* kbar for most materials , Thus 
everything in expression (5) except B.5(P) and pep) 
are either known or may be approx imated with reason­
able accuracy. 

The iterative procedure described below is that pre­
sented in Fig , 1, because we feel that the understandinO' 

'" of the p rocedure given in Fig. 2 will be facilitated by an 
understanding of the simpler procedure. Thus the 
iterative procedure described assumes that relations 
(20) and (21) hold. 

At P= 1 atm, all the quantities involved are known ; 
no iteration is required to estimate the requjred elastic 
constan ts of solids. 

At the next higher pressure all the fundamental 
quantities in the relations (3), (5), (6), (7 ) , (8), (9), 
and ( 10), except A (P) and K (I, l, P), are known. The 
procedure developed here involves a two sta(Te iteration 

, "" 
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In;:reo se Pressure (P) "''''''-:--________ ---. 

-It 
SET). (P)=>' (PrecedinQ Pressure) 

""'''" ""{:$J "" i"f' I"'" :.., ,,""" ",', 
L(J,P) 

Ith Resononl Frequency <E;/'--------l 
-It n ext 1 or 

I 

SET K 'lJ, P, )= 1.0 

.----~ 
SET K = \I.' N (I, J, P) 

IF 

IF )"(P)*>'(PrecedinQ 

T(I,J,P) 

V (J,J, P) 

K'(I, J, pI 

K '* K t_ IF K' = K 

When all 
ore 

V.tocitY mode, 

co ~u I a Ie d 

a5 
(P) 

6(p) 

aT (P) 

>.'(P) 

Iteration) t 
All other 

porometers 
a1 pressure P 

one at the level of pressure and the other on the Ilh null 
frequency of the Ilh mocle. \Ye sel X (P) = X (Preceding 
Pressure) and 1\(!, 1. P) = 1 and estimate Y(I, I, P) 
and r(l, I, P) and K(I, I, P). Ii the value of K(I, I, P) 
thus obtained agrees with the pre"iously assigned 
value we compute .'\~(!, 1, P) for the (l+l)th fre­
quency. If this value of XU, J, P) docs not agree with 
the prc"iously assigned valuc these values of .Y (I, J, P) 
and r (I, I, P) are corrected by setting X (I, J, T) 
equal to the value obtained last, and iterating all over 
again. This is repeated till two conseculin estimates of 
1\(1, I, P ) are the same, A similar COlllpul,;t ion tS 

performed for all the velocity modes, B~' interpolation, 
frolll these r(f, J, P }'s one obtains valucs correspond­
Ing to F(R, J, 1», each of which is callee! r(J, P} . 
These r(J, I»'s in turn arc used to obtain ~ '(J, P) 
which together with p( P) yield an l's tilll:lte of lfi(P), 
t..(J'), /P'(J», and finally X(I»). If the " ;tiue of X(P) 
thus oblained agrees wilh the pre"iollsly assigned value, 

FIG. 1. A flow chart of th" il l ra: i \, prtl­
cedure to estimate the \-ari a i,,,, 11' I h.: 
elastic constant of a cubic ""lid ',' :1 1, P' ,', 
sure wh en the elastic \\'a\'~ \1 :;,.- .,r,· 
obtained from the mc::\,u r. 11- I' -[ ,·i 1111' 

resonant frequencies oj a , ta ll,iil ~ \":tl(' 

as a function of pressu re at a tl-nll".';\ 1111 I'. 

I 

TABLE 1. The pressure clerivative of the adial,atic :1-,,1 i",,· 
thermal iJulk moduli of XaCI and KCl as obtained I" I: :lrtcl, 
and Schuele (B and S), as obtained in the present ,; "n. \ fJ, 
from the data of Rartcls and Schuele. 

Bulk /Ilodulus 

Band S f) 

NaCI 

295°1( 
Adiabatic 5.27 5.33 
Isothermal 5 _ 35 5.38 

195°K 
Adiabatic 5.13 5,18 
Isothermal 5.20 5.23 

KCf 
295°K 

Adiabatic 5.3-1- 5.3G 
Isothermal 5 . ·11 5 . .u 

195°1( 
Adiahatic 5.3-1- 5.36 
Isothermal 5.·H 5A3 

-

: 

I 
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Increose Pressure (P) 

~ ~------------~ 
Temperature (T) 

.J, next Temperature 

SET A(p,n=A (Precodino Pre .. ur., T) 

r-------------S-E-T--A-(p-'T-)-=-A'~(-P,7T) ~ 

SET ).(p,n=). (Pre edino Pr ... ure, T) 

!'JG. 2. A now chart of the iterativc pro­
cedurc to estimate the " ariation in the 
dastic constants of a cubic sol id with 
pressure when the travel-timc measure­
ments are made as a function of pres­
su re at morc than one temperaturc. 
II(P, T)=[ax (p, T )/aT]p. 

SET). (P,T) =).'(P,T 

Jlh .elocily mode al nexl .eloclly mode 
Pressure P and Temperature T 

or. calculated ot Pressure P 
and Temperature T 

B (p.T! 

(~cpil~,n) 

6(P.Tl 
BT (p,n 
).' (p,n 

IF).' (P n*). (Precedin It orol ion T) 

IF).' (P,T)=).(p,n 

When all BT (P, n .re 
calculated at Pressure P 

IF A' (P T)* A (Preced ino Iterol ion T) 

the estimates ·of flS(P) and flT(P) are correct. If this 
value of "A(P) docs not agree with the previously 
assigned value these BS (P) and BT ( P) are corrected by 
means of setting "A (P) equal to the value of "A (P) 
obtained last and iterating all oYer again. This is 
rtpeated till two consecutivc estimates of }.. (P ) are the 
same. Once this is known all other clastic constan t 
parameters may be obtained. This iterative procedure 
is sketched diagramatically in Fig. 1. 

Table I displays the estimates of the pressure deriva­
tives of the adiabatic and isothermal bulk moduli of 
:\aCl and KCl at 295 0 and 195°K obtained from the 
above mentioned iterative procedure. The required 
travel time data as a function of pressure for this com­
putation were reconstructed frol11 the pressure deriva­
lives of the travel -time for the various e1a.stic Wave 
velocities given in the paper of Bartels and Schucle.s 

All other parameters at 
Prlssure P and all Temperatur •• 

All other ancillary data used were also taken from R ef. 
8. It may be seen that the estimates of the pressure 
derivatives of the uulk moduli of 1\aCI and K CI as 
obtained in the presen t work fo r pressures ranging up 
to 1. 7 kbar difTer slightly frolU those obtained by Bartels 
and Schuele. However, sllch difTerences may become 
significant at higher pressures. It should be noted 
further that the iterative procedure outlined in the 
present work may be easily applied to determine the 
varia tion in the elastic constants ' of an isot ropic sol id. 

Figure 2 is the schematic rcpresentation of the 
iteration procedure when the travel-time measurements 
are made as a function of pressllre at more than one 
temperature. 

\Ye are in the process of developing a variant of this 
itera tive procedure designed to estimate the clast ic 
constants of a nOllcubic solid as a function of pressure. 
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Microdeformation of Solids 
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Small-scale indentation experiments performed on nonmeta llic specimens are reported. These experiments 
are very similar to others performed by one of us (N.G.) on metal specimens and reported in a previous issue 
of this journal. Again, it is believed lhat the theoretical strength of the perfect lattice is being observed. 

In a previous paper! Gane and Bowden have reported 
the results of very small-scale indentation tests per­
formed on electropolished single-crystal specimens of 
several fcc metals. These experiments were performed 
inside a scanning electron microscope, and used fine 
single-crystal titanium carbide tips, similar to field-ion 
microscope tips, as indenters. These tips were prepared 
by a two-layer ac electropolishing technique, developed 
originally by Ralph .2 The results of these e:-.-pcriments 
were notable because (a) no deformation occurred 
until a critical load on the indenter was reached, and 
(b) this critical load was often very high, so that the 
shear stress corresponding to the onset of deformation 
approached the estimated theoretical shear strength.3 4 

The purpose of the present communication is to 
report that similar results have been obtained from an 
analogous series of experiments performed on single 
crystals of two nonmetallic materials, germanium and 
magnesium oxide. (100) surfaces of magnesium oxide 
crystals and \111 J surfaces of germanium crystals were 
prepared by chemical polishing and ctching,3 and the 
former were coated with a thin «"'-'300 ,\) layer of gold 
by vapor deposition, in order to prevent their being 
charged up by the incident electron beam wheil im aged 
in the scanning electron microscope. Germanium had 
suflicient conductivity that no sllch conducting layer 

was necessary. Figure 1 shows an indenter resting at 
zero load on a typical germanium specimen. 

The principal experimental difference between the 
present work and that of Gane and Bowden! was that 
the tips used as indenters in the current e:\rperimen ts 
were those having the most nearly spherical ends. Tip 
radii were typically 2000-5000 A, and were measured 
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FIG. 1. .-\ litaniuDl ca rbide tip resting at zero load on a 
t 111 1 germaniulll surface. Nole lhe dislocation etch pit. 
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